资源类型

期刊论文 473

会议视频 6

年份

2023 36

2022 50

2021 47

2020 22

2019 35

2018 23

2017 24

2016 23

2015 30

2014 24

2013 21

2012 14

2011 26

2010 18

2009 20

2008 19

2007 25

2006 1

2005 1

2004 2

展开 ︾

关键词

可持续发展 3

吸附 3

污染控制 3

优化 2

印染废水 2

厌氧消化 2

废水 2

废水处理 2

循环流化床 2

战略 2

技术路线图 2

气化 2

洁净煤技术 2

煤化工 2

煤层气 2

燃煤发电 2

绿色化工 2

能源 2

能源安全 2

展开 ︾

检索范围:

排序: 展示方式:

On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasificationwastewater

Xue Zou,Jin Li

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 490-498 doi: 10.1007/s11705-016-1600-4

摘要: Membrane fouling has been investigated by using a polysulfone ultrafiltration membrane with the molecular weight cutoff of 20 kDa to treat crushed coal pressurized gasification wastewater. Under the conditions of different feed pressures, the permeate flux declines and rejection coefficients of pollutants referring to three parameters (total organic carbon (TOC), chroma and turbidity) were studied. The membrane fouling mechanism was simulated with three classical membrane fouling models. The membrane image and pollutants were analyzed by scanning electron microscopy and gas chromatography-mass spectrography (GC-MS). The results indicate that the permeate flux decreases with volume reduction factor before reaching a constant value. The rejection coefficients were also measured: = 70.5%, = 84.9% and = 91%. Further analysis shows that the higher the feed pressure is, the sooner the permeate flux reaches constant value and the more sharply the permeate flux declines. Constant flux indicates a nonlinear growth with feed pressure ( ): when equals 1.2 bar, the mark for the critical flux, slight membrane fouling occurs; when exceeds 1.2 bar, cake layer pollution aggravates. Also the rejection coefficients of global pollutant increases slightly with , suggesting the possibility of cake compression when exceeds 1.2 bar. Through regression analysis, the fouling of polysulfone ultrafiltration membrane could be fitted very well by cake filtration model. The membrane pollutants were identified as phthalate esters and long-chain alkenes by GC-MS, and a certain amount of inorganic pollutants by X-ray photoelectron spectroscopy.

关键词: membrane fouling     ultrafiltration membrane     coal gasification wastewater     rejection coefficient    

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 415-426 doi: 10.1007/s11705-018-1725-8

摘要: Catalytic steam gasification of fine coal char particles was carried out using a self-made laboratory reactor to determine the intrinsic kinetics and external diffusion under varying pressures (0.1–0.5 MPa) and superficial gas flow velocities (GFVs) of 13.8–68.8 cm?s . In order to estimate the gas release rate at a low GFV, the transported effect of effluent gas on the temporal gasification rate pattern was simulated by the Fluent computation and verified experimentally. The external mass transfer coefficients ( ) and the effectiveness factors were determined at lower GFVs, based on the intrinsic gasification rate obtained at a high GFV of 55.0 cm?s . The was found to be almost invariable in a wider carbon conversion of 0.2–0.7. The variations of at a median carbon conversion with GFV, temperature and pressure were found to follow a modified Chilton-Colburn correlation: (0.04< <0.19), where is total pressure and is atmospheric pressure. An intrinsic kinetics/external diffusion integrating model could well describe the gasification rate as a function of GFV, temperature and pressure over a whole gasification process.

关键词: coal char     catalytic steam gasification     pressure     kinetics     diffusion    

Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent

Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 518-527 doi: 10.1007/s11705-020-1926-9

摘要: The coal fly ash produced by gasification is estimated to be over 80 million ton per year in China by 2021. It has mainly been disposed as solid waste by landfill. There is lack of study focused on its utilization. In this paper, the coal fly ash produced by gasification was at first analyzed and then applied to synthesize zeolite as an adsorbent. The effects of synthesis conditions on the cation exchange capacity (CEC) of zeolite were investigated. The results from X-ray diffraction and scanning electron microscope indicated that the crystallinity of the synthesized zeolite is the most important factor to affect the CEC. When the synthesized zeolite with the highest CEC (275.5 meq/100 g) was used for the adsorption of Cr(VI) from aqueous solution, the maximum adsorption capacity for Cr(VI) was found to be 17.924 mg/g. The effects of pH, contact time and initial concentration on the adsorption of Cr(VI) were also investigated. The adsorption kinetics and isotherms can be well described by the pseudo-second-order model and Langmuir isotherm model, respectively.

关键词: coal fly ash     gasification     zeolite     Na-P1     chromium(VI)    

Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow

YAN Qiuhui, GUO Liejin, LIANG Xing, ZHANG Ximin

《能源前沿(英文)》 2007年 第1卷 第3期   页码 327-330 doi: 10.1007/s11708-007-0048-0

摘要: Hydrogen is a clean energy carrier. Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection. The co-gasification performance of coal and a model compound of biomass, carboxymethylcellulose (CMC) in supercritical water (SCW), were investigated experimentally. The influences of temperature, pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20–25 MPa, 650vH, 15–30 s) are discussed in detail. The experimental results show that H, CO and CH are the main gas products, and the molar fraction of hydrogen reaches in excess of 60%. The higher pressure and higher CMC content facilitate hydrogen production; production is decreased remarkably given a longer residence time.

关键词: carboxymethylcellulose     temperature     co-gasification performance     Hydrogen     residence    

Effect of pressure on gasification reactivity of three Chinese coals with different ranks

Chunyu LI, Jiantao ZHAO, Yitian FANG, Yang WANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 385-393 doi: 10.1007/s11705-010-0501-1

摘要: The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) with CO and H O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area. Results show that the char gasification reactivity increases with increasing partial pressure. The gasification reaction is controlled by pore diffusion, the rate decreases with increasing total system pressure, and under chemical kinetic control there is no pressure dependence. In general, gasification rates decrease for coals of progressively higher rank. The experimental results could be well described by the shrinking core model for three chars during steam and CO gasification. The values of reaction order with steam were 0.49, 0.46, 0.43, respectively. Meanwhile, the values of reaction order with CO were 0.31, 0.28, 0.26, respectively. With the coal rank increasing, the pressure order is higher, the activation energies increase slightly with steam, and the activation energy with CO increases noticeably. As the carbon conversion increases, the degree of graphitization is enhanced. The surface area of the gasified char increases rapidly with the progress of gasification and peaks at about 40% of char gasification.

关键词: coal     gasification     pressure     reaction order     shrinking core model    

Reaction kinetics and internal diffusion of Zhundong char gasification with CO

Yun Liu, Jiangyuan Qu, Xuehui Wu, Kai Zhang, Yuan Zhang

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 373-383 doi: 10.1007/s11705-020-1949-2

摘要: Mass transfer usually affects the rate of chemical reactions in coal. The effect of internal diffusion on char gasification with CO in the temperature range from 1123 K to 1273 K was investigated via thermo-gravimetric analysis and assessment of char morphology features. The results revealed that the effect of internal diffusion on the initial reaction rate was more significant with an increase of particle size, due to the concentration gradient of the gasification agent within the solid particles. In the early stage of gasification, the generation of new micropores and the opening of closed pores led to an increase in specific surface area. As the reaction proceeded, the openings were gradually expanded and the specific surface area continued to increase. However, with further reaction, disappearance of edge pores, melting and collapse of the pore structure led to a decrease in specific surface area. The intrinsic activation energy and reaction order based on the th-order model were 157.67 kJ∙mol and 0.36, respectively. Thus, temperature zones corresponding to chemical reaction and diffusion control were identified. Moreover, the calculated effectiveness factor provided a quantitative estimation of internal diffusion in the initial stage.

关键词: coal char     CO2 gasification     internal diffusion     pore evolution    

Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification

WANG Fuchen, ZHOU Zhijie, DAI Zhenhua, GONG Xin, YU Guangsuo, LIU Haifeng, WANG Yifei, YU Zunhong

《能源前沿(英文)》 2007年 第1卷 第3期   页码 251-258 doi: 10.1007/s11708-007-0035-5

摘要: The features of the opposed multi-burner (OMB) gasification technology, the method and process of the research, and the operation results of a pilot plant and demonstration plants have been introduced. The operation results of the demonstration plants show that when Beisu coal was used as feedstock, the OMB CWS gasification process at Yankuang Cathy Coal Co. Ltd had a higher carbon conversion of 3%, a lower specific oxygen consumption of about 8%, and a lower specific carbon consumption of 2%–3% than that of Texaco CWS gasification at the Lunan Fertilizer Plant. When Shenfu coal was used as feedstock, the OMB CWS gasification process at Hua-lu Heng-sheng Chemical Co. Ltd had a higher carbon conversion of more than 3%, a lower specific oxygen consumption of about 2%, and a lower specific coal consumption of about 8% than that of the Texaco CWS gasification process at Shanghai Coking & Chemical Corporation. The OMB CWS gasification technology is proven by industrial experience to have a high product yield, low oxygen and coal consumption and robust and safe operation.

Optimization and performance prediction of a new near-zero emission coal utilization system with combinedgasification and combustion

GUAN Jian, WANG Qinhui, LI Xiaomin, LUO Zhongyang, CEN Kefa

《能源前沿(英文)》 2007年 第1卷 第1期   页码 113-119 doi: 10.1007/s11708-007-0013-y

摘要: In accordance with the new near-zero emission coal utilization system with combined gasification and combustion, which is based on the CO acceptor gasification process, the product gas composition of the gasifier and the combustor was calculated by means of thermodynamic equilibrium calculation software FactSage 5.2. Based on these calculations, the whole system efficiency calculation method that complies with the mass and energy conservation principle was established. To enhance the system efficiency, the system pressure and the gasifier carbon conversion ratio were optimized. The results indicate that the system efficiency increases with increasing pressure and gasifier carbon conversion ratio. After taking into consideration the influence of the pressure and carbon conversion ratio on the performance of the system, the gasifier and the combustor were synthetically studied. The optimum system pressure and carbon conversion ratio were obtained as 2.5 MPa and 0.7, respectively. The system efficiency could reach around 62.1% when operated in these two optimum parameters. If the advanced ion transport membrane (ITM) air separation technology is used, there would be an increase of another 1.3%.

关键词: influence     efficiency calculation     optimum     software FactSage     transport    

Managing Innovation: Accelerating the Development of Clean Coal Technology

Ya-juan Sun,Guo-qing Wang,Yan Wang,Ning Zhang,Zhen-qi Zhu

《工程管理前沿(英文)》 2015年 第2卷 第1期   页码 86-92 doi: 10.15302/J-FEM-2015013

摘要: Coal gasification technology concerns the clean, efficient utilization of coal, providing a core solution to address its negative environmental image and impact. Presently, China is pursuing the development of coal gasification technology despite industry setbacks, limited progress and elusive solutions due to limited specialty materials, technological shortfalls and intellectual expertise. The most prominent challenges to overcome include unbalanced research and project scale development issues followed by an excessive emphasis on equipment manufacturing rather than responsible management practices. The ENN Group explored these industry shortcomings to develop a comprehensive management philosophy that is specifically tailored to overcome these fundamental hurdles. Such innovative solutions include the Centralized Innovation Camp, TRIZ (Theory of Inventive Problem Solving) training, Extensive Alliance Network and enhanced process management, focusing upon engineering, quality assurance and process efficiency with the overall objective of industrial scale application. As a result, ENN’s Clean Coal Technologies include: Coal Hydro-gasification, Supercritical Coal Gasification, Catalytic Coal Gasification and Underground Coal Gasification, having successfully completed all pilot plant testing requirements and the construction of demonstration commercial units.

关键词: coal technology     coal gasification     innovation     management     clean     ENN    

A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags

Md Tanvir ALAM, Baiqian DAI, Xiaojiang WU, Andrew HOADLEY, Lian ZHANG

《能源前沿(英文)》 2021年 第15卷 第1期   页码 46-67 doi: 10.1007/s11708-020-0807-8

摘要: Gasification or combustion of coal and biomass is the most important form of power generation today. However, the use of coal/biomass at high temperatures has an inherent problem related to the ash generated. The formation of ash leads to a problematic phenomenon called slagging. Slagging is the accumulation of molten ash on the walls of the furnace, gasifier, or boiler and is detrimental as it reduces the heat transfer rate, and the combustion/gasification rate of unburnt carbon, causes mechanical failure, high-temperature corrosion and on occasions, superheater explosions. To improve the gasifier/combustor facility, it is very important to understand the key ash properties, slag characteristics, viscosity and critical viscosity temperature. This paper reviews the content, compositions, and melting characteristics of ashes in differently ranked coal and biomass, and discusses the formation mechanism, characteristics, and structure of slag. In particular, this paper focuses on low-rank coal and biomass that have been receiving increased attention recently. Besides, it reviews the available methodologies and formulae for slag viscosity measurement/prediction and summarizes the current limitations and potential applications. Moreover, it discusses the slagging behavior of different ranks of coal and biomass by examining the applicability of the current viscosity measurement methods to these fuels, and the viscosity prediction models and factors that affect the slag viscosity. This review shows that the existing viscosity models and slagging indices can only satisfactorily predict the viscosity and slagging propensity of high-rank coals but cannot predict the slagging propensity and slag viscosity of low-rank coal, and especially biomass ashes, even if they are limited to a particular composition only. Thus, there is a critical need for the development of an index, or a model or even a measurement method, which can predict/measure the slagging propensity and slag viscosity correctly for all low-rank coal and biomass ashes.

关键词: slag     viscosity     biomass     low-rank coal     combustion     gasification    

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 193-204 doi: 10.1007/s11783-010-0268-0

摘要: Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C–350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C–700°Cwith an air equivalence ratio (ER) of 0.2–0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm ) , which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MSW and the fly ash percentage in the total ash.

关键词: municipal solid waste (MSW)     steam drying     gasification and melting    

Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)

Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1096-5

摘要:

PE ball milling pretreatment induces higher H2 production and purity by gasification.

Ca(OH)2 reacts at solid state with PE boosting H2 and capturing CO2.

Ca(OH)2 significantly reduces methanation side-reaction.

关键词: Hydrogen production     Gasification     Plastic waste     High energy ball milling    

以煤气化为核心的多联产能源系统——资源/能源/环境整体优化与可持续发展

倪维斗,李政,薛元

《中国工程科学》 2000年 第2卷 第8期   页码 59-68

摘要:

环境污染已成为制约我国经济可持续发展的瓶颈,按照现有技术,我国的能源系统是不可持续的。在一次能源以煤为主而且长期不可能大幅度变化的国情下,如何构建资源、能源、环境整体化的可持续发展能源系统,是从现在就要开始重点研究并逐步实施的战略性问题。文章在介绍国外可持续能源系统研究的最新进展基础上,提出以煤气化为核心的多联产能源系统是解决我国未来可持续发展的方向,详细论述了可能实施的多联产耦合实例,效益分析以及需要解决的关键技术和科学问题;对我国实施多联产战略的起步、分层次步骤、政府支持以及相关政策提出了建议。

关键词: 可持续发展     多联产     煤气化     能源系统    

Hydrogen production by biomass gasification in supercritical or subcritical water with Raney-Ni and other

Aixia PEI, Lisheng ZHANG, Bizheng JIANG, Liejin GUO, Ximin ZHANG, Youjun LV, Hui JIN,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 456-464 doi: 10.1007/s11708-009-0069-y

摘要: Gasification of peanut shell, sawdust and straw in supercritical or subcritical water has been studied in a batch reactor with the presence of a series of Raney-Ni and its mixture with ZnCl or Ca(OH). The main gas products were hydrogen, methane, carbon dioxide, and a small amount of carbon monoxide. Different types of Raney-Ni, containing different metal components such as Fe, Mo or Cr, have different influences on the gasification yield and hydrogen selectivity. The catalysis effect can be improved obviously by adding ZnCl or Ca(OH). Increasing the reaction temperature or adding ZnCl and Ca(OH) could improve the mass of H in gas products and reduce the mass of CH and CO at the same time. The possible mechanism is that ZnCl can decompose the biomass particle by accelerating cellulose hydrolyzation in high-temperature water, increasing more specific surface to admit catalysts, while Ca(OH) can absorb CO to produce CaCO deposit, which can drop out from the reactant system, and which will drive the reaction to get more hydrogen. With respect to the biomass conversion to gas product and selectivity of H at low temperature, the series of Raney-Ni has shown many advantages over other catalysts; thus, this kind of catalyst has great potential to be utilized in the hydrogen industry for the gasification of biomass.

关键词: Different     presence     sawdust     Raney-Ni     Gasification    

储能在大规模气流床煤气化的应用展望

沈中杰, 李俊国, 刘海峰

《工程(英文)》 2023年 第29卷 第10期   页码 50-54 doi: 10.1016/j.eng.2023.08.009

标题 作者 时间 类型 操作

On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasificationwastewater

Xue Zou,Jin Li

期刊论文

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles

Xuantao Wu, Jie Wang

期刊论文

Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent

Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai

期刊论文

Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow

YAN Qiuhui, GUO Liejin, LIANG Xing, ZHANG Ximin

期刊论文

Effect of pressure on gasification reactivity of three Chinese coals with different ranks

Chunyu LI, Jiantao ZHAO, Yitian FANG, Yang WANG

期刊论文

Reaction kinetics and internal diffusion of Zhundong char gasification with CO

Yun Liu, Jiangyuan Qu, Xuehui Wu, Kai Zhang, Yuan Zhang

期刊论文

Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification

WANG Fuchen, ZHOU Zhijie, DAI Zhenhua, GONG Xin, YU Guangsuo, LIU Haifeng, WANG Yifei, YU Zunhong

期刊论文

Optimization and performance prediction of a new near-zero emission coal utilization system with combinedgasification and combustion

GUAN Jian, WANG Qinhui, LI Xiaomin, LUO Zhongyang, CEN Kefa

期刊论文

Managing Innovation: Accelerating the Development of Clean Coal Technology

Ya-juan Sun,Guo-qing Wang,Yan Wang,Ning Zhang,Zhen-qi Zhu

期刊论文

A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags

Md Tanvir ALAM, Baiqian DAI, Xiaojiang WU, Andrew HOADLEY, Lian ZHANG

期刊论文

A steam dried municipal solid waste gasification and melting process

Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN

期刊论文

Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)

Giovanni Cagnetta, Kunlun Zhang, Qiwu Zhang, Jun Huang, Gang Yu

期刊论文

以煤气化为核心的多联产能源系统——资源/能源/环境整体优化与可持续发展

倪维斗,李政,薛元

期刊论文

Hydrogen production by biomass gasification in supercritical or subcritical water with Raney-Ni and other

Aixia PEI, Lisheng ZHANG, Bizheng JIANG, Liejin GUO, Ximin ZHANG, Youjun LV, Hui JIN,

期刊论文

储能在大规模气流床煤气化的应用展望

沈中杰, 李俊国, 刘海峰

期刊论文